
Basics on commutative algebra

August 2014

1 Modules

Rings are supposed to be commutative and unitary.

Definition 1.1. 1. Let A be a ring, an A-module M is a commutative group M
endowed with a product

AˆM Ñ M
pa, xq ÞÑ a ˚ x

such that

(a) associativity:

a, b P A, x P M, a ˚ pb ˚ xq “ pabq ˚ x

(b) distributivity:

pa` bq ˚ x “ a ˚ x` b ˚ y, y P M

(c) 1A ˚ x “ x (ñ 0A ˚ x “ 0M, p´1qA ˚ x “ ´x)

2. We define the expression ax for a P A and x P M as

ax ” a ˚ x

3. If f : M Ñ N, (M,N are A-modules) is a group homomorphism and f pa ˚ xq “
a ˚ f pxq, @a P A, @x P M, then f is called a module homomorphism

4. A submodule of M is a subgroup N such that ax P N, @x P N, @a P A
5. let S Ă M subset, a submodule of M generated by S is the smallest submodule of

M containing S. It is also equal to
č

N submodule containing S

N “ ta1x1 ` ...anxn|a1, ..., an P A, x1, ..., xn P S,n variesu

Exercise 1.2. All vector spaces are modules. Every ring is a module over itself, and
its submodules are precisely its ideals. Modules over Z are exactly the abelian groups
up to isomorphism.

Example 1.3. f : M Ñ N linear map, kerp f q submodule of M and Imp f q submodule of
N.
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Exercise 1.4. f : M Ñ N linear is injective ô kerp f q “ t0u

Definition 1.5. 1. Let S be a subset of M. S is free if @x1, ..., xn P S, @a1, ..., an P A,
a1x1 ` ..., anxn “ 0 ùñ a1 “ .... “ an “ 0;

2. A basis of M is a free subset which generates M;

3. pMiqiPI family of A-modules

‘iPIMi “ tpaiqiPI, ai “ 0, @i P Iexcept for finitely many of themu Ă
ź

iPI

Mi

If Mi “ A @i P I then we denote ‘iPIMi “ ApIq.
4. M is a free module if there is a basis (ô there is an isomorphism ApIq ” M for

some set I, ApIq “ ‘IA ‰ AI).

Exercise 1.6. Prove the above equivalence.

5. Let N be a submodule of M. M{N is the quotient as group endowed with a natural
structure of module by a ˚ x̄ “ ax, @a P A, @x P M, x̄ is the class of x mod N.
M{N is a A-module, and the canonical M Ñ M{N is linear

Example 1.7. 1. n ě 1, Z{nZ Z-module is not free @x P Z{nZ, n ¨ x “ 0
2. Q Z-module is not free. If r ‰ 0, n ¨ r “ 0 ñ n “ 0, and if r1 “ p1{q1, r2 “ p2{q2;

pi, qi P Z, qi ‰ 0.

pq1p2qr1 ´ pq2p1qr2 “ 0

If S is a basis of Q as Z-module ñ S “ tr0u but Q “ r0Z, 1{2r0 R r0Z.

Exercise 1.8. If M is finitely generated and has a basis, then the basis is finite.

Exercise 1.9. If a finitely generated Z-module has two different bases, they are the
same size.

Exercise 1.10. (ISOMORPHISM THEOREM) If f : M Ñ N linear surjective map,
prove that M{kerp f q is isomorphic to N as modules.

1.1 Noetherian modules:

Definition 1.11. 1. M is A-module is noetherian if every submodule of M is finitely
generated (generated by a finite subset).

2. A is noetherian ring if it is noetherian as an A-module over itself. This is equiv-
alent to saying that the ideals of A are finitely generated.

Exercise 1.12. A noetherian, M A-module then M is noetherian if and only if M is
finitely generated.

Example 1.13. 1. Fields are noetherian, Z is noetherian;

2. Theorem (Hilbert) A is noetherian ñ ArXs is noetherian.
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3. k field, krX1, ...,Xns is noetherian.

4. If A is noetherian then A{I is noetherian @I ideal of A.

Exercise 1.14. Prove the converse of Hilbert’s Theorem: If ArXs is noetherian ñ A
is noetherian.

1.2 Localization

Definition 1.15. A is a ring. A multiplicative subset S of A is a set such that:

1. 1 P S,

2. @s, t P S, st P S,

Definition 1.16. S´1A is the localization of A with respect to S. It is defined as the
set of equivalence classes ta{s, a P A, s P Su, where equivalence is defined below

a{s “ b{t ô pat´ bsqs1 “ 0, for some s1 P S;

a{s` b{t “ pat` bsq{pstq.
a{s ¨ b{t “ pabq{pstq.

Example 1.17. 1. a{s “ a1{s1 ñ pas1 ´ a1sqs2 “ 0;

2. pat` bsq{pstq “ pa1t` bs1q{ps1tq

ppat` bsqs1t´ pa1t` bs1qst “ as1t2
` bss1t´ a1st2

´ bss1t “ pas´ a1sqt2 is killed by s2

We can check that this defines a structure of commutative unitary ring on S´1A, the
map A Ñ S´1A sending a to a{1 is a ring homomorphism.

Remarque 1.18. if A is an integral domain, S “ A ´ t0u is multiplicative subset of
A. S´1A is a field of fraction of A. If A integral, then @T multiplicative subset of A,
T´1A Ă FracpAq.

Example 1.19. A “ QrX,Ys{pXYq “ Qrx, ys, S “ txn|n ě 1u Y t1u and S´1A “

Qrx, 1{xs “ tPpxq{xn|Ppxq P Qrxs,n ě 0u.

Example 1.20. 1. Let f P A, A f :“ S´1A, S “ t f n|n ě 1u Y t1u;
2. If f is nilpotent ñ 0 P S, ñ 0 P S´1A is invertible in S´1A ñ S´1A “ t0u;
3. Let p be a prime ideal of A, Ap “ S´1A, S “ A ´ p multiplicative and δ defined

as
δ : A Ñ S´1A

a ÞÑ a{1
of A. We have the following universal property: Let f : A Ñ B be a ring homo-
morphism then f factorizes though S´1A if and only if f pSq Ă Bˆ (invertible)

A

δ
��

f // B

S´1A
f̃

<<zzzzzzzz

f̃ is a ring homomorphism f̃ pa{sq “ f paq f psq´1, f psq P B.
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Exercise 1.21. Prove the above universal property.

Notation: B ring, SpecpBq “ tprime ideals o f Bu (Spectrum of B). If f : A Ñ B ring
homomorphism ñ

Specp f q : SpecpBq Ñ SpecpAq
Q ÞÑ f´1pQq

Proposition 1.22. Specp f q : SpecpS´1Aq Ñ SpecpAq induces a bijection from SpecpS´1Aq
to tQ P SpecpAq|QX S “ Hu

Proof. Exercise �

M A-module, S multi subset of A Ñ S´1A. Let’s define S´1M “ tx{s|x P M, s P Su
1. x{s “ y{t ô s1ptx´ syq “ 0, for some s1 P S;

2. x{s` y{t “ ptx` syq{pstq;
3. a{s ¨ x{t “ paxq{pstq.

Exercise 1.23. Prove the above definitions are well defined and do make S´1M into a
S´1A-module.

Exercise 1.24. Let S be a multiplicatively closed subset of a ring A and let M be a
finitely generated A-module. Prove that S´1M “ 0 if and only if there exists s P S such
that sM “ t0u.

1.3 Tensor product

A ring; M,N A-modules;

Definition 1.25. The tensor product of M, N over A. Let H be a A-module endowed
with a bilinear map δ : MˆN Ñ H with the universal property for every bilinear map,
f : MˆN Ñ L there exists a unique factorization

MˆN

��

f // L

H
f̃

;;wwwwwwwwww

with f̃ linear map .

Proposition 1.26. The tensor exists and is unique.

Proof. 1. Uniqueness: Exercise.

2. Existence:
ApMˆNq px, yq P MˆN,

epx,yq “
"

1 in px, yq (coordinate)
0 elsewhere P ApMˆNq
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tepx,yq|px, yq P MˆNu is a basis of ApMˆNq.

L “ submodule of ApMˆNq generally by the element

epx1,x2,yq ´ epx1,yq ´ epx2,yq

epx,y1`y2q ´ epx,y1q ´ epx,y2q

xi P M, yi P N.
epax,yq ´ epx,ayq, epax,yq ´ aepx,yq, a P A

Prove that ρ : MˆN Ñ AMˆN{L is a tensor product of M, N over A.
�

For x P M, y P N, we note xb y “ ρpx, yq.

Remarque 1.27. — every of M bA N can be written as
ř

i f inite xi b yi, xi P M,
yi P N;

— xb y “ x1 b y1 does not imply a relation between x and x1, y and y1.

Example 1.28.
Z{2ZbZ Z{3Z “ t0u

xby “ p3x´2xqby “ 3xby´2x{6by “ xb3y´0by “ xb0´0by “ f px, 0q´ f p0, yq “ 0´0 “ 0

Exercise 1.29. Show that Z{mZbZ Z{nZ “ t0u if m,n are coprime.

Proposition 1.30. A ring, M, N A-modules

1. MbA A » M;

2. MbN » N bA M;

3. p‘iMiq bA N » ‘ipMi bA Nq;
4. Lb pMbNq » pLbMq bN.

Proof. 1. MbA A » M sending xb a “ paxq b 1 to ax.
Let MˆA Ñ M sending px, aq to xa. It is a bilinear map such that the following
diagram is commutative:

Mˆ A //

ρ

��

M

MbA A

::vvvvvvvvv

2. same kind of proof: we define MbA N » N bA M by mapping xb y to yb x.

3. We define p‘iMi bA N » ‘ipMi bA Nq by mapping pxiqi b y ÞÑ pxi b yqi.
�

Corollary 1.31. If M is free over A with a basis peαqα then every elements g MbA N
can be written uniquely as

ř

α eα b yα, yα P N,

p‘iMiq bA N » ‘ipMi bA Nq
pxiqi ‘ y ÞÑ pxi b yqi
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Proof. use Proposition (c) �

Tensor products of linear maps M,N,M1,N1 A-modules u : M Ñ N1, v : M1 Ñ N1

MbN ubv //M1 bN1

MˆN

g
88rrrrrrrrrr

where g sends px, yq to upxq b vpxq is bilinear and pub vqpx‘ yq “ upxq b vpyq.

1.4 Base change or extension of scalars:

A ring, π : A Ñ B ring homomorphism. If N is a B-module then N is a A-module.
a P A, x P N, x ˚ a “ πpaqx.
If M is a A-module, BbA M is a B-module, b ˚ p

ř

i bib xiq “
ř

ipbbiq b xi bi P B, xi P M,
b P B.
Fix b P B, we define the morphism ¨b : B b M Ñ B b M Ñ B b M sending pc, xq to
pbcq b x

2 Complex of modules over A

Definition 2.1.

. . . //M0
f0 //M1

f1 //M2
f2 // . . . p˚q

Mi A-module fi linear maps.

1. p˚q is a complex if fi`1 ˝ fi “ 0 @i, that is Imp fiq Ă kerp fi`1q.

2. A complex p˚q is exact if Imp fiq “ kerp fi`1q @i (exact sequence).

Example 2.2. The complex

0 //M0
f0 //M1

f1 //M2
// 0

1. is exact at right if f1 is surjective;

2. is exact at left if f0 is injective;

3. is exact at the middle if Imp f0q “ Kerp f1q.

Exercise 2.3. Let 0 //M0
f0 //M1

f1 //M2
// 0 be an exact sequence of A-

modules. If M0, M2 are finitely generated, so is M.

Proposition 2.4. Let

0 //M0
f0 //M1

f1 //M2
// 0
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be a short exact sequence. Let N be a A-module then, the complex

0 //M0 bA N
f0 //M1 bA N

f1 //M2 bA N // 0

is exact (at right), that is M1 bA N�M2 bA N.

Proof. Exercise.
�

Corollary 2.5. I ideal of A, M A-module then MbA A{I » M{IM

Proof. Exercise �

Remarque 2.6. I bA M� IM (surjective but in general not injective. )

Example 2.7. A “ Z, M “ Z{2Z, I “ 2Z, IM “ 2M “ 0.
I » A, I bA M » AbA M » M ‰ 0.

Definition 2.8. We say that M is a flat A-module if @I ideal of A, the canonical map
I bA M Ñ IM is an isomorphism (ô I bA M Ñ M injective, sending α ÞÑ αx.)

Theorem 2.9. M is flat ô for any injective morphism N1 Ñ N2 linear map of A-
module then M is flat ô M is torsion free.
Let M be a module on an integral domain A. M is torsion free, if ax “ 0, a P A
ñ a “ 0 or x “ 0 that is equivalent to @a P Azt0u, ¨a : M Ñ M sending x to ax is
injective.

Proof. Exercise. �

Exercise 2.10. 1. Let A be a nonzero ring. Show that Am » An then m “ n.

2. Could you use the same proof to show that if f : Am Ñ An is surjective, then
m ě n?

3. Could you use the same proof to show that if f : Am Ñ An is injective, then
m ď n?

2.1 Tensor product of algebras

Definition 2.11. A is a ring, a A-algebra is a (commutative unitary) ring B endowed
with a ring homomorphism A Ñ B.

Example 2.12. 1. ArX1, ...,Xns is a A-algebra.

2. ArX1, ...,Xns{I is a A-algebra/

3. Any ring is uniquely a Z-algebra (@ B ring D! ring homomorphism ZÑ B sending
k to k ¨ 1B.

Definition 2.13. A finite generated A algebra is a A-algebra isomorphic to Arx1, ..., xns{I

B, C A-algebra, B bA C exists as A-module and has a structure of A-algebra. We
define the product as p

ř

bibciqp
ř

b1jbc1jq “
ř

bib1jbcic1j. It is well defined (independent

of the representative) A Ñ BbA C sending a to ab 1 “ 1b a ring homomorphism.
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Proposition 2.14. Given B, C two algebra. For any A-algebra D, and ring homomor-
phism φ : B Ñ D, ψ : C Ñ D, there exists a unique ring homomorphism BbA C Ñ D.

B
iB
��

φ

##G
GG

GG
GG

GG
G

BbA C θ // D

C

iC

OO
ψ

;;wwwwwwwwww

is commutative. Here, iB sends b to bb 1 and c to 1b c.

Proof. Exercise. �

2.2 Nakayama lemma

Theorem 2.15. pa,m0q a local ring (i.e. m the unique maximal ideal of A. Let M be
a finitely generated A-module such that M “ m0M then M “ 0.

Proof. Exercise. �

Proposition 2.16. Let M be a A-module then M is flat if and only if for any B prime
ideal of A, MbA B is flat over B if and only if for any m maximal ideal of A, MbA Am
is flat over Am

Proof. Exercise. �

Exercise 2.17. Prove that if A is a local ring, M and N are finitely generated A-
modules, and MbA N “ 0, then one of M or N is zero.

Theorem 2.18. Let pA,mq be a local ring. Let M be a finitely generated A-module then
M is flat if and only if M is free.

Proof. M free ñ M flat in general even if M is not finitely generated. Suppose that M
is flat MbA A{m “ MbA j » M{mM Ñ k “ A{m (k is a field the residue field of A.) is a
vector space over k of finite dimension. If x1, ..., xn P M are such that x̄1, ..., x̄n P MbA k
is a basis.
We want to prove tx1, ..., xnu is a bases of M over A.

1. If tx1, ..., xnu in M such that tx̄1, ..., x̄nu genrates Mbk implies tx1, ..., xnu generates
M.

2. If tx1, ..., xnu in M such that tx̄1, ..., x̄nu is free implies tx1, ..., xnu is free.

LEFT IN EXERCISE �

Exercise 2.19. If M and N are flat A-modules, then so is MbA N.
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3 Hilbert Nullstellensatz

Theorem 3.1. (Hilbert Nullstellensatz) A Ñ B, B a A-algebra, b P B is integral over
A if there is a0, ..., an´1 P A such that a0 ` a1b` ¨ ¨ ¨ ` an´1bn´1 ` bn “ 0:

1. tb P B, b integral over Au subring of A;

2. B is finitely over A (definition is finitely generated as A-module) ô B is integral
over A and finitely generated as A-algebra.

k field

Lemma 3.2. (Noether normalization lemma) If B is a finitely generated k-algebra then
there exists a finite ring homomorphism krX1, ...,Xns ãÑ B.

Theorem 3.3. ( Weak Hilbert Nullstellensatz) Let m be a maximal ideal of krX1, ..,Xns

then k Ñ krX1, ...,Xns{m is a finite extension (if k “ f̄ algebraically closed, then
krX1, ...,Xns{m » k and m “ pX1 ´ α1, ...,Xn ´ αnq.

Theorem 3.4. (Strong Nullstellensatz) For any ideal of krX1, ..,Xns,
?

I “
č

m maximal ideal containing I

m

Corollary 3.5. Suppose that k “ k̄, let I be an ideal of krX1, ...,Xns, let

ZpIq “ tpα1, ..., αnq P kn
|Ppα1, . . . , αnq “ 0, @P P Iu

Let F P krX1, ...,Xns then Fpxq “ 0, @x P ZpIq ô F P
?

I.

M,N A-modules M1 Ď M, N1 Ď N,

M{M1
bA N{N1

» MbA N{pImpM1
bNq ` ImpMbN1

qq

i : M1
Ñ m, iN “ ib Idn : M1

bA N Ñ MbA N
b : M{N1

ˆN{N1
Ñ MbA N{pImpM1

bNq` ImpMbN1
qq bilinear sending px̄, ȳq to xb y

ñ b : M{N1
bA N{N1

Ñ MbA N{pImpM1
bNq ` ImpMbN1

qq sending x̄b ȳ to xb y
Let d : MˆN Ñ M{M1

bN{N1 bilinear sending px, yq to x̄b ȳ

MˆN

φ
��

d //M{M1 bN{N1

MbA N

��

33gggggggggggggggggggggg

MbA N{pImpM1 bNq ` ImpMbN1qq

D!d1 linear

77ooooooooooooooooooooooooooooo

ImpM1 bNq ` ImpMbN1q Ă kerpd̃q, d1px1 b y` xb y1q “ x̄1 b ȳ` x̄b ȳ1 “ 0.

We check that b̃ and d̃ are inverse one from another.

Exercise 3.6. Explain how to deduce the Weak Nullstellensatz from the Strong Null-
stellensatz.
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